Is there enough ADS-B for everyone ?

adsb_density

The air traffic can be divided into cooperative and non-cooperative traffic. The cooperative traffic is equipped with avionics facilitating its detection. The non-cooperative traffic has no such equipment and detection is solely based on ground or onboard sensors. It is important to note that detecting cooperative traffic is a lot easier and more precise than detecting non-cooperative traffic. This is why many experts advocate for all low altitude traffic to be cooperative, at least in high density airspaces, and a proposed solution is to use ADS-B. This solution seem acceptable considering that a large part of the existing traffic is already required (or will be soon) to carry ADS-B out, the technical solutions exist and they are affordable both in terms of SWaP (Size, Weight and Power) and cost. Now, a crucial questions remains: is it possible to introduce hundreds of ADS-B users in already busy (radio frequency wise) airspaces without disturbing the performances of existing systems, e.g. ATM systems ?

To answer this question, the MITRE conducted a study on the impact of equipping low level drones with Universal Access Transceiver (UAT) ADS-B. Both air-to-air and air-to-ground communications were considered. According to this study the crucial parameters are the traffic density and ADS-B transmission power. The following table, extracted from the study, shows the probability to decode a message depending on drones density and transmission power with values in bold being acceptable for ATM applications. With a density of 5 drones per square kilometer the emission power cannot be higher than 0.01W, which strongly limits the communication range, though experiments to know the precise range depending on the transmit power should be conducted.

adsb_power_vs_density

The left column should be read as “number of drone per square kilometer / total number of drones in a 16NM radius and 400ft height cylindre

Overall, the results of this study show that using ADS-B UAT in high density airspaces will prove difficult has reducing the transmission power of ADS-B is likely to decrease detection ranges and impact safety. For the particular case of UAT, considering the fact that it is only used in the US, principally aimed at General Aviation (GA) and with the current grow in GA traffic, the FAA is unlikely to approve such solution to make the drones cooperative. From a broader perspective, the study showed how quickly a cooperative method can overload a communication mean. Having only cooperative traffic is desirable but this kind of study make it look like an unreachable objective. For now…

Leave a Reply